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Abstract. We study density of states and conductivity of the doped double-exchange system, treating
interaction of charge carriers both with the localized spins and with the impurities in the coherent poten-
tial approximation. It is shown that under appropriate conditions there is a gap between the conduction
band and the impurity band in paramagnetic phase, while the density of states is gapless in ferromag-
netic phase. This can explain metal-insulator transition frequently observed in manganites and magnetic
semiconductors. Activated conductivity in the insulator phase is numerically calculated.

PACS. 75.50.Pp Magnetic semiconductors – 75.30.Vn Colossal magnetoresistance – 72.10.-d Theory of
electronic transport; scattering mechanisms

1 Introduction

The recent rediscovery of colossal magnetoresistance
(CMR) in doped Mn oxides with perovskite structure
R1−xDxMnO3 (R is a rare-earth metal and D is a divalent
metal, typically Ba, Sr or Ca) [1] has generated substan-
tial interest in these materials [2]. The doping of parent
material RMnO3 by a divalent metal is the source of the
holes responsible for the transport properties of these ma-
terials. In addition, each divalent atom introduced, is the
center of an impurity potential. Many papers analyzed
the influence of strong magnetic disorder, inherent in the
the CMR materials at finite temperature, upon the single-
particle states and transport properties. However, the in-
terplay between the magnetic disorder and the doping-
induced disorder was studied less. The impurity potential
plays double role. First, the potential fluctuations deter-
mine the transport at temperatures well below the fer-
romagnet (FM) - paramagnet (PM) transition point Tc.
Second, strong potential may pin the Fermi level either in
the conduction band tail (in the Anderson model of disor-
der [3]), or in the emerging impurity band. The analysis
of experimental data reveals strong relevance of the latter
effect to metal-insulator transition (MIT) near Tc both in
magnetic semiconductors [4] and manganites [5]. However,
to the best of our knowledge the impurity-band scenario
in the double-exchange (DE) model was not discussed yet.

The present paper is devoted to the consideration of
single-particle states and conductivity in impure DE sys-
tem. Interaction of charge carriers both with the local-
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ized spins and with the impurities is strong, so it is defi-
nitely not enough to limit ourselves with the finite number
of terms of perturbation expansion. A simple but physi-
cally meaningful approximation, allowing to sum up in-
finite number of perturbation expansion terms is the co-
herent potential approximation (CPA). Initially CPA was
proposed to treat potential disorder [6], but soon after it’s
appearance the generalization to random spin system was
developed [7]. The CPA was also used to describe diluted
magnetic semiconductors [8].

In the present paper we for the first time treat on
equal footing the interactions of electrons with the core
Mn spins and with the doping impurities using the matrix
generalization of the CPA. The concurrent action of po-
tential disorder and temperature dependent spin disorder
leads to a number of interesting phenomena, in particular
to the possibility of the opening of the gap at the Fermi
level with the increase of temperature and, hence, to MIT
transition.

2 Hamiltonian and theoretical formulation

We consider the DE model with the inclusion of the single-
site impurity potential. In addition, as it is widely ac-
cepted, we apply the quasiclassical adiabatic approxima-
tion and consider each Mn spin as a static vector with
a fixed length S (Si = Sni, where ni is a randomly ori-
ented unit vector). The Hamiltonian of the model in site
representation is

Ĥij = ti−j + δij (εi − Jni · σ̂) = Hkin + Vimp + V̂sd, (1)
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where ti−j is the electron hopping, εi is the random on-site
energy, J is the effective exchange coupling between a Mn
core spin and a conduction electron and σ̂ is the vector of
the Pauli matrices. The hat above the operator reminds
that in one-particle representation it is a 2 × 2 matrix in
the spin space (we discard the hat when the operator is a
scalar matrix in the spin space).

We present Hamiltonian as

Ĥ = Hkin + Σ̂ + Vimp + V̂sd − Σ̂ = Ĥ0 + V̂ (2)

(the site independent self-energy Σ̂(E) is to be determined
later), and construct a perturbation theory with respect
to random potential V̂ = Vimp + V̂sd − Σ̂. To do this let
us introduce the T -matrix as the solution of the equation

T̂ = V̂ + V̂ Ĝ0T̂ , (3)

where

Ĝ0 =
1

E − Ĥ0

· (4)

For the exact Green function we get

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0. (5)

The coherent potential approximation (CPA) is expressed
by the equation 〈

Ĝ
〉

= Ĝ0. (6)

This equation can also be presented as〈
T̂i
〉

= 0, (7)

where T̂i is the solution of the equation

T̂i = V̂i + V̂iĝ(E − Σ̂)T̂i, (8)

and

g(E) = (G0(E))ii =
∫
N0(ε)
E − εdε, (9)

where N0(ε) is the bare density of states. The averaging in
equations (6, 7) should be performed both with respect to
random orientations of core spins and with respect to ran-
dom on-site energies. We obtained, in fact, the algebraic
equation for the 2× 2 matrix Σ̂〈[

1− V̂iĝ(E − Σ̂)
]−1

V̂i

〉
= 0. (10)

This equation takes into account scattering both due to
randomness of the core spins, and due to the impurities. If
the impurity potential is negligible (V = 0) this equation
coincides with the equation (20) of reference [9] obtained
in the dynamical mean field approximation (and also with
those obtained for the Falikov-Kimball model [10,11]).

In the reference frame where the z-axis is directed
along the magnetization, Σ̂ is diagonal, and equations (10)
reduces to the system of two equations for its diagonal
matrix elements Σσ(E) (σ =↑, ↓). The equations acquire
especially simple form at two extreme particular cases,
which we will analyze:
(a) T = 0. The magnetic state is coherent FM with nzi = 1,
and equation (10) takes the form〈

εi ∓ J −Σ↑,↓
1− (εi ∓ J −Σ↑,↓) g(E −Σ↑,↓)

〉
= 0. (11)

(b) T ≥ Tc and zero magnetic field. The magnetic state is
isotropic PM with 〈ni〉 = 0, which leads to Σ↓ = Σ↑ = Σ,
and equation (10) takes the form〈

εi + J −Σ
1− (εi + J −Σ) g(E −Σ)

〉
+
〈

εi − J −Σ
1− (εi − J −Σ) g(E −Σ)

〉
= 0. (12)

We will solve the equations (11) and (12) in the strong
Hund coupling limit (J →∞). In this limit we obtain two
decoupled spin sub-bands. The equation for the upper sub-
band, after shifting the energy by −J , for both cases (a)
and (b) can be written down in unified form〈

1
1− (εi −Σ) g(E −Σ)

〉
= α, (13)

where α = 1 for T = 0, α = 2 for T ≥ Tc. In the model
of substitutional disorder (εi = 0 with probability x, and
εi = V with probability 1 − x), equation (13) takes the
form

1− x
1 +Σg (E −Σ)

+
x

1 + (Σ − V ) g (E −Σ)
= α. (14)

3 The CPA equations for semi-circular bare
density of states

We consider semi-circular (SC) bare DOS

N0(ε) =
4
πW

√
1−

(
2ε
W

)2

, (15)

at |ε| ≤W/2 and N0(ε) = 0 otherwise, for which

g(E) =
4
W

2E
W
−

√(
2E
W

)2

− 1

 . (16)

Let us introduce the following normalized quantities

λ =
Σ

W
, ω =

E

W
, v =

V

W
(17)

After simple algebra we obtain from equation (14) the
cubic equation with respect to

γ ≡Wg (E−Σ) = 8
[
ω − λ−

√
(ω − λ)2 − 1/4

]
, (18)
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in the form

γ3 + 16 (v − 2ω)γ2 + 16
[

1
α
− 16ω (v − ω)

]
γ

−256
ω

α
+ 256 (1− x)

v

α
= 0. (19)

The number of electrons per cite n is given by

n =
∫ ∞
−∞

f(E)N(E)dE, (20)

where f(E) is the Fermi distribution function, and

N(E) =
α

Wπ
Im γ (21)

is the actual density of states. To define the position of µ,
the Fermi level, we must impose the relation between n
and x; the simplest assumption appropriate for mangan-
ites is the equation n = 1− x.

4 Conductivity in CPA

For a disordered one-electron system the static conductiv-
ity is given by

ρ−1 =
e2π~

V

∫ (
− ∂f
∂E

)
×
〈

Tr
[
v̂αδ

(
E − Ĥ

)
v̂αδ

(
E − Ĥ

)]〉
dE, (22)

where V is the volume and v̂a is a Cartesian component of
the velocity operator. To obtain the conductivity in CPA
let us express operator delta-function as follows

δ
(
E − Ĥ

)
=

1
2πi

[
Ĝ(E−)− Ĝ(E+)

]
. (23)

Using equations (5) and (4) in Bloch representation〈
kσ
∣∣∣Ĝ0(E)

∣∣∣k′σ′〉 =
δk,k′δσ,σ′

E − εk −Σσ (E)
, (24)

we get〈
Tr
[
v̂aδ

(
E − Ĥ

)
v̂aδ

(
E − Ĥ

)]〉
=∑

k,σ

v2
kα [Aσ (εk, E)]2 + O

(〈
T̂ T̂
〉)

, (25)

where

Aσ (ε,E) =
1
π

ImΣσ (E)
[E − ε−ReΣσ (E)]2 + [ImΣσ (E)]2

(26)

is the one-particle spectral weight function. On account
of the locality of T -matrix the second term in the trace is
equal to∑
s,s′=±; k,k′,σ,σ′

ss′vkαvk′αGσ (εk, Es)Gσ′ (εk′ , Es)

×Gσ′ (εk′ , Es′)Gσ (εk, Es′)

× 〈Tσσ′(k− k′, Es)Tσ′σ(k′ − k, Es′)〉 . (27)

Since in CPA 〈Tσσ′(k− k′, Es)Tσ′σ(k′ − k, Es′)〉 does not
depend on k and k′ and v−kα = −vkα the above expres-
sion is identically zero [12,13]. Thus, finally

ρ−1 =
e2π~
v

∫ ∫ (
− ∂f
∂E

)
× v2

α (ε)N0 (ε)
∑
σ

[Aσ (ε,E)]2 dEdε, (28)

where v is the unit cell volume and by definition

v2
α (ε)N0 (ε) =

1
N~2

∑
k

(
∂εk
∂kα

)2

δ (ε− εk) . (29)

Let us assume nearest-neighbor tight binding spectrum on
simple d-hypercubic lattice (v = ad)

εk = −t
d∑

α=1

cosakα,

v2
α (ε)N0 (ε) = − a2

d~2

∫ ε

−∞
εN0 (ε) dε. (30)

In SC DOS model

v2
α (ε)N0 (ε) = − 4

πW

a2

d~2

∫ ε

−W/2
z

√
1−

(
2z
W

)2

dz

=
1
3
W

π

a2

d~2

(
1− 4ε2

W 2

)3/2

. (31)

Substituting this result into equation (28) we obtain

ρ−1 = σ0

∫ (
− ∂f
∂E

)
Λ (E) dE, (32)

with

σ0 =
e2

2πdad−2~
(33)

being the Mott minimal metallic conductivity, and

Λ (E) =
2W
3π

∫ W/2

−W/2

(
1− 4ε2

W 2

)3/2

∑
σ

{
Im
[

1
E − ε−Σσ (E)

]}2

dε. (34)

For the strong Hund coupling we obtain

Λ (E) =
4

3π

∫ 1

−1

(
1− x2

)3/2{
Im
[

1
x− z

]}2

dx, (35)

where z = 2 (ω − λ). equations (32, 35) give the con-
ductivity in the framework of bare SC DOS model for
arbitrary hole concentration x and impurity potential
strength V .
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Fig. 1. DOS at T = 0 (full line) and high-temperature (dashed
line) in the units of W−1 for x = 0.2 and V/W = 0.4

5 Influence of the impurity potential

First, consider density of states. It is known, that within
CPA for every x there exists critical value of potential-
to-bandwidth ratio vc(x) such that at v > vc(x) the
separate impurity band splits off the conduction band
(that is a gap opens in N(E)). In our approach we get
two different curves vc(x, T = 0) and vc(x, T ≥ Tc),
which present boundaries of metal-insulator and metal-
semiconductor “phase diagrams”, respectively, in (v, x)
plane. Due to effect of magnetic disorder it appears that
vc(x, T = 0) > vc(x, T ≥ Tc).

For a typical concentration x = 0.2, vc(0.2, T = 0) ≈
0.49 and vc(0.2, T ≥ Tc) ≈ 0.35. So if we choose v = 0.4
both N(E) and Λ(E) must be gapless at T = 0 but do
have a gap at T ≥ Tc. Numerical calculations of the DOS
performed at T = 0 and T ≥ Tc for the above x and
v clearly demonstrate FM-PM transition induced band
splitting (Fig. 1).

Now address the question of conductivity. Consider
first the position of µ and conductivity at T = 0. We
get from equation (20) µ(T = 0) = 0.3662W . Note that
µ(T = 0) lies on the neck connecting conduction band
and impurity states derived parts of the band. As a re-
sult, the residual conductivity (equation (32)) ρ−1(T =
0) = 0.6163σ0 is less then the Mott limit.

At T ≥ Tc DOS and Λ(E) have the same gap ∆ =
0.031W (see Figs. 1, 2), so µ(T ≥ Tc) must lie in the
gap. Thus, the model describes a bad metal at T = 0,
and a semiconductor at T ≥ Tc. The transition between
two types of conduction (FM-PM transition induced MIT)
should occur at some temperature below Tc. Such a pic-
ture agrees with the recent photoemission experiments
showing drastic decrease of DOS at the Fermi level [14]
as temperature increases towards Tc.
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Fig. 2. Energy-dependent conductivity at T = 0 (full line) and
high-temperature (dashed line) in the units of σ0 for x = 0.2
and V/W = 0.4

It is checked numerically that DOS displays square-
root like behavior near the top of the conduction band Ec

N(E) ≈ nc

√
Ec −E, (36)

and the bottom of the impurity band Ei

N(E) ≈ ni

√
E −Ei. (37)

Unlike DOS Λ(E) behaves linearly near the band edges

Λ(E) ≈W−1λc(Ec −E), for E < Ec;

Λ(E) ≈W−1λi(E −Ei), for E > Ei. (38)

The assumption T < ∆ allows us to explicitly obtain
µ(T ≥ Tc). Calculating integrals in equation (20) with
exponential accuracy we obtain

µ ≈ 1
2

(
Ec +Ei + T ln

nc

ni

)
. (39)

The integral in equation (32), calculated with the same ac-
curacy, leads to activation law for conductivity with linear
temperature pre-exponent

ρ−1 ≈ σ0
BT

W
exp

(
−EA
T

)
, (40)

where EA = ∆/2 ≈ 0.015W and B is the following nu-
merical constant

B = λc

√
ni

nc
+ λi

√
nc

ni
≈ 22 (41)

for the parameters considered.
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Low values of conductivity obtained for the case of
spin disorder are an indication of the possibility of An-
derson localization [4,15,16], which CPA is incapable of
accessing. But the present results complement and sup-
port the localization based approach. In fact, the results
of reference [4] were obtained under the assumption of the
Fermi level pinning, which is now explained as being due
to strong electron-impurities interaction (and the impu-
rity band formation).

In another aspect, the model considered may also ex-
plain low-temperature MIT observed in initially metallic
manganites R1−xDxMnO3 upon substitution of R by iso-
valent atoms (e.g. La by Y [17]). One may speculate that
the substitution forms a deep impurity band which can
capture holes in R1−xDxMnO3.

6 Conclusion

To conclude, we derived CPA equations for the one-
electron Green function and conductivity of DE system
containing impurities. The equations were solved for the
SC bare DOS and substitutional disorder model. It was
shown that if the electron-impurity interaction is strong
enough, there is a gap between the conduction band and
the impurity band in PM phase, the density of states being
gapless in FM phase. Under appropriate doping conditions
the chemical potential is pinned inside the gap. This can
explain metal-insulator transition observed in manganites
and magnetic semiconductors.

This research was supported by the Israeli Science Foun-
dation administered by the Israel Academy of Sciences and
Humanities.
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